

Welcome to openmatDB’s documentation!

openmatDB (open Modular and exTendable Data Base) is a free (see Licenses) data base framework primarily aimed
at scientific/engineering data base applications with a focus on easy extendability through user plug-ins (e.g. for
specific and complex data analysis).

By using a plug-in concept which relies on RESTful APIs and JSON as an exchange format, openmatDB can easily be
extended to support plug-ins written in different languages or plug-ins distributed on multiple remote servers.

Since even basic data base functions are provided by plug-ins the code base of the core modules is kept small and
simple.

For more details on the openmatDB concept and its features see the Introducion.

openmatDB is currently mainly written in python and JavaScript (for the web-interface) and its components have
a number dependencies on 3rd party libraries - see Software components for details.

For details on the licences of the openmatDB components see Licenses.

Note

openmatDB is currently in its early development stages and not suitable for a production system. However A complete
test environment (including a desktop and a browser based GUI) can however be downloaded - see Test environment.

Contents:

	Introducion
	Framework overview

	Plug-in server initialization procedure

	UI initialization procedure

	UI request processing procedure

	Software components
	pyopenmatdb

	openmat-plugins

	openmat-webui

	openmatGUI

	openmat-testenv

	Licenses
	pyopenmatdb

	openmat-plugins

	openmat-webui

	openmatGUI

	openmat-testenv

	Plug-ins
	General

	Structure of a plug-in

	Defined UI element types

	Defined return types

	Test environment
	Prerequisites

	Obtain the source code

	Build docker images

	Start docker containers

	Importing test data

	Connecting with the desktop-GUI

	Stopping the test environment

	Additional remarks

	API reference
	API for creating plug-ins in python

	API for creating UIs in python

	RESTful API for building plugin-servers

Indices and tables

	Index

	Module Index

	Search Page

Introducion

Framework overview

The openmatDB environment basically consist of three components:

	a data base server exposing a RESTful API (currently couchDB is used)

	one or more plugin-server(s)

	graphical user-interface(s) (desktop and/or browser based)

The plug-in servers form the core of the openmatDB environment.
They communicate with each other, the UIs and the data base. They host the plug-ins, that carry out all operations.
Since the communication is based on RESTful APIs and data is exchanged in form of JSON strings plug-in servers for
different programming languages can be created with comparably low effort (as long as JSON handling and HTTP servers
are available for that language).

The UIs basically collect “plug-in run-requests” from the users - i.e. name of the requested plug-in and the parameters
(e.g. record IDs, record attributes for performing a calculation).

The working principle is explained in more detail in UI request processing procedure.

The following illustration provides an overview of the system:

[image: ../_images/framework_overview.png]
As can be seen in the illustration two classes provide the interfaces of openmatDB environment:

	OpenmatEnvironment - provides mainly routing information and easy access to the API calls of the plug-in servers

	CouchClient - provides data base access for plug-ins

The communication principle and the use of the interfaces is illustrated in the following sub-chapters.

Plug-in server initialization procedure

When a plug-in server is launched following steps are performed:

	The plug-in server will query the register function of each plug-in on the server

	The register function will then return information on required to work with the plug-in (e.g. data types for its
input parameters and return values, GUI elements to create to capture these input parameters) - for details see the
Plug-ins chapter.

	With the return values of all plug-ins the plug-in server create a plugin_config dictionary, which it can share
with the UIs

UI initialization procedure

This section will illustrate the steps of the initialization process of an OpenmatEnvironment, when a user interface
is launched.

	The UI needs to create an OpenmatEnvironment” object and one or more calls to the *add_plugin_server method

	The add_plugin_server methods sends some HTTP requests to the plug-in server, which returns information about the
plug-ins it is hosting (i.e. it returns the plugin_config as explained above)

	The add_plugin_server method then updates the server_list and the plugin_route_table (which is a look-up table
for plug-in names and their corresponding server - its purpose will be explained in more detail in the
UI request processing procedure chapter.

	Afterwards the plugin_route_table will be send to all plug-in servers in the server_list and each server will
contain a copy of the plugin_route_table.

The animation below illustrates the UI initialization process for an example, where two plug-in servers are added to
the environment.

[image: ../_images/interface_init.gif]

UI request processing procedure

When the user has selected a plug-in, entered the required parameter values into the UI elements (e.g. line edits,
spin boxes, combo boxes,…) and launched the plug-in (e.g. by pressing a ‘Run plug-in’ button) the UI layer sends a
call to the UI’s OpenmatEnvironment object’s run_plugin function.

The procedure can be sub-divided into following steps:

	The run_plugin method is called with the plug-in name and parameters provided by the UI layer

	The run_plugin method will first perform a look-up in the plugin_route_table to find the server, which is hosting
the corresponding plug-in

	It will send an HTTP POST request to the plug-in server with plug-in name and parameter values encoded in the JSON

	The plug-in server will decode the request and calls the requested plug-in’s run function passing the parameter
values provided by the request as the function arguments

	The plug-in will then execute its code and eventually encounter a request to run another plug-in.

	In this case the plug-in server’s run_plugin method is called.

	The run_plugin method will fetch the server address, which is hosting the requested plug-in and dispatch a plug-in
run-request analogous to the request from the UI

	A plug-in can also request a couple of data base interactions - i.e. the plug-in will call one of the CouchClient’s
data base request method’s

	The CouchClient will then send an HTTP request to the data base and return the (decoded) response to the plug-in

	The plug-in will eventually do further processing on the data and/or return the information to the /run_plugin
API call, which will a response with the plug-ins results to the sender (i.e. a run_plugin method of either a
UI or another plug-in server)

	When a result is finally returned to the UIs run_plugin method, it will decode the information and send it to the
UI layer, which can render the results accordingly by using the return_type definition of the corresponding
plug-in stored in the plugin_config variable (which might tell the UI to render the result e.g. as a chart or a
table)

The animation below illustrates the UI request processing procedure for a common example.

In this example a user request is received to run “pluginC” (hosted by plug-in server #2). The “pluginC” however relies
on “pluginA”, which is stored on plug-in server #1. While “pluginC” does not request any data base interaction “pluginA”
will raise a request for a record stored in the data base.

In a real application “pluginC” could be an implementation of a statistical evaluation, which first calls another
plug-in to fetch the required data for the analysis by forwarding some search parameters provided by the user.

[image: ../_images/user_request.gif]

Software components

The source code of the different components of openmatDB are currently provided on 5 different repositories on
gitlab.

Warning

openmatDB is currently in its early development stage and not suitable for a production environment!
However A complete test environment (including a desktop and a browser based GUI) can however be downloaded
- see Test environment - for testing/development purposes.

For an overview on the licenses on the different software components see the Licenses chapter.
For more details on licensing and copyright information refer to the NOTICE and LICENSE files
in the corresponding source code repository.

pyopenmatdb

pyopenmatdb provides the main components of the system - i.e. the python classes for the interfaces
OpenmatEnviroment and CouchClient and the plug-in server.

openmat-plugins is released under Apache License Version 2.0.
The source code can be obtained from: https://gitlab.com/thecker/pyopenmatdb

pyopenmatdb is written python and depends on following packages:

	python3

	Requests

	Flask

	Flask-CORS

openmat-plugins

openmat-plugins is a collection of plug-ins for openmatDB’s python plug-in server.

openmat-plugins is released under Apache License Version 2.0.
The source code can be obtained from https://gitlab.com/thecker/openmat-plugins

The plug-ins depend on following python packages:

	python3

	pandas

	xlrd

	matplotlib

	mpld3

	NumPy

	pyopenmatdb

openmat-webui

The openmat-webui repository provides a browser based GUI to the openmatDB environment.

[image: ../_images/web-ui.png]
openmat-webui is free software released itself under the Apache License Version 2.0.
The source code con be obtained from https://gitlab.com/thecker/openmat-webui

It comes bundle with following software components:

	jQuery JavaScript Library v1.12.4, Copyright jQuery Foundation and other contributors

	jQuery UI v1.12.1, Copyright jQuery Foundation and other contributors

	jQuery UI-themes v1.12.1, Copyright jQuery Foundation and other contributors

	Fancytree, v2.34.0, Copyright 2008-2019 Martin Wendt

openmat-webui is written python and JavaScript. The JavaScript dependencies are bundled with the software
(see above). For the python part following packages are required:

	python3

	Flask

	Flask-CORS

	pyopenmatdb

openmatGUI

The openmatGUI repository provides a GUI, which runs as a local desktop application.

[image: ../_images/desktop-ui.png]
openmatGUI is free software released under the GNU GENERAL PUBLIC LICENSE Version 3 (GPLv3).

See NOTICE and LICENSE file for details.

openmatGUI is written in python and depends on following python packages:

	Python3

	PyQt5

	matplotlib

	pyopenmatdb

openmat-testenv

The openmat-testenv repository contains a collection of configuration files and shell scripts, which automate setting
up and launching a test environment for openmatDB - for details see the Test environment chapter.

openmat-testenv is free software released under the Apache License Version 2.0.

In order to run the shell scripts provided by this repository following programs are required (besides a
UNIX shell):

	Docker CLI

	cURL

Furthermore if you run the shell scripts following pre-built docker images will be
downloaded to your system:

	couchDB:latest, https://hub.docker.com/_/couchdb

	python:3.7, https://hub.docker.com/_/python

The python:3.7 image will be used create two images for the openamtDB environment (openmat-py_plugin:latest and
openmat-webui:latest).
Note, that the python packages (and their dependencies) required by pyopenmatdb, openmat-plugins and
openmat-webui will be downloaded and installed on the images as well (see chapters above).

Licenses

This chapter lists the licences disclaimers of the individual software components, which are part of the openmatDB
environment.
For details on the license of the individual components see also the LICENSE and NOTICE files inside the corresponding
source code repository:

	https://gitlab.com/thecker/pyopenmatdb

	https://gitlab.com/thecker/openmat-plugins

	https://gitlab.com/thecker/openmat-webui

	https://gitlab.com/thecker/openmatGUI

	https://gitlab.com/thecker/openmat-testenv

pyopenmatdb

Copyright 2020 Thies Hecker

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

openmat-plugins

Copyright 2020 Thies Hecker

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

openmat-webui

openmat-webui - a browser based GUI for the openmatDB environment

 Copyright 2020 Thies Hecker

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

3rd party Libraries bundled with openmat-webui
==

This project comes bundled with following 3rd party libraries:

* jQuery JavaScript Library v1.12.4
* jQuery UI v1.12.1
* jQuery UI-themes v1.12.1
* Fancytree v2.34.0

The copyright notices and license disclaimers can be found below.

jQuery JavaScript Library v1.12.4

 jQuery JavaScript Library v1.12.4
 http://jquery.com/

 Includes Sizzle.js
 http://sizzlejs.com/

 Copyright jQuery Foundation and other contributors
 Released under the MIT license
 http://jquery.org/license

In openmat-webui the re-distributed file (including the license information)
of jQuery is located in:
/webpage/static/jquery-ui/external/jquery/jquery.js

jQuery UI v1.12.1

 Copyright jQuery Foundation and other contributors, https://jquery.org/

 This software consists of voluntary contributions made by many
 individuals. For exact contribution history, see the revision history
 available at https://github.com/jquery/jquery-ui

 The following license applies to all parts of this software except as
 documented below:

 ====

 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 ====

 Copyright and related rights for sample code are waived via CC0. Sample
 code is defined as all source code contained within the demos directory.

 CC0: http://creativecommons.org/publicdomain/zero/1.0/

 ====

 All files located in the node_modules and external directories are
 externally maintained libraries used by this software which have their
 own licenses; we recommend you read them, as their terms may differ from
 the terms above.

In the openmat-webui repository the re-distributed files (including the
original license file) of jQuery UI are located under:
/webpage/static/jquery-ui/

jQuery UI-themes v1.12.1

 Copyright jQuery Foundation and other contributors, https://jquery.org/

 This software consists of voluntary contributions made by many
 individuals. For exact contribution history, see the revision history
 available at https://github.com/jquery/jquery-ui

 The following license applies to all parts of this software except as
 documented below:

 ====

 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 ====

 Copyright and related rights for sample code are waived via CC0. Sample
 code is defined as all source code contained within the demos directory.

 CC0: http://creativecommons.org/publicdomain/zero/1.0/

 ====

 All files located in the node_modules and external directories are
 externally maintained libraries used by this software which have their
 own licenses; we recommend you read them, as their terms may differ from
 the terms above.

In the openmat-webui repository the re-distributed files (including the
original license file) of jQuery UI-themes are located under:
/webpage/static/jquery-ui-themes/

Fancytree v2.34.0

 Copyright 2008-2019 Martin Wendt,
 https://wwWendt.de/

 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

In the openmat-webui repository the re-distributed files (including the
original license file) of Fancytree are located under:
/webpage/node_modules/jquery.fancytree/

openmatGUI

openmatGUI is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Foobar is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with openmatGUI. If not, see <https://www.gnu.org/licenses/>.

openmat-testenv

Copyright 2020 Thies Hecker

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Plug-ins

General

Plug-ins form the base for openmatDB’s functionality. Even basic functions like returning the collections in the data
base are provided by plug-ins. I.e. although the openmatDB user interfaces can run without any plug-in, they are of no
real use without them.

In order to allow users to easily extend the data base functionality the plug-in concept is kept as simple as possible.

The concept is based on these principles:

	Each plug-in has to have two mandatory functions - run and register

	The run function is called when a plug-in is launched. It has only one mandatory argument - the
session argument - which is a representation of the server that runs it (i.e. in case of the python plug-in server a
PythonPluginServer class object - see API documentation

	Further arguments to the run function could be a collection name, a record ID, an attribute in a record,…

	The register function is used to inform a GUI how to handle the plug-in’s input and output - e.g.:

	it provides the GUI with UI element definitions and data types required to define each of its parameter’s values
(e.g. we would like to have a line edit to receive a collection name as a string or a spin box returning an integer
to filter records based on a numeric attribute value)

	it also proves information about the return type of the plug-in, so that the GUI knows how to render the
results (e.g. as plain text, as a table or a plot chart)

	additional information about the plug-in is provided in order to eventually render a help string, author names,
license info, etc.

	plug-ins are able call other plug-ins. This way complex functions can be realized with a small code base in the
actual openmatDB modules

	plug-ins can be written in different languages. Currently only a python interface is available, but since the plug-ins
communicate with other plug-ins by exchanging information as JSON objects new language bindings (e.g. R, C++) can be
created with relatively low effort.

	plug-ins shall work without modification on both the desktop UI and the web-interface (which is given because the
plug-ins do not directly communicate with the GUI layer. The GUI only needs to support methods to render the different
input and return types of the plug-ins)

	plug-ins shall also be usable without any GUI - e.g. allow batch processing

Structure of a plug-in

As mentioned above a plug-in can consist of only two mandatory functions - run and register.
In the example below the code for a simple plug-in, which gets a specific record from the data base by its ID is shown:

def run(session, collection=None, recordID=None):
 record = session.db_client.get_record_by_ID(collection=collection, record_ID=recordID)

 return record

def register():
 return {
 'name': 'Get record by ID',
 'UI_elements': [
 {'type': 'TextInput',
 'label': 'Collection',
 'default_value': '',
 'data_type': 'str'},
 {'type': 'TextInput',
 'label': 'Record ID',
 'default_value': '',
 'data_type': 'str'},
],
 'help': 'Returns a dictionary representation of record identified by its ID',
 'return_type': 'text'
 }

As can be seen the run function takes three arguments: the session object, the name of the collection the record
belongs to and the record’s ID.

In the run function the get_record_by_ID method of the session’s db_client is used to communicate with the
data base.
For data base functions provided by the - have a look at API for creating plug-ins in python.

The register function does nothing except returning a dictionary with the plug-in config info.

When the plug-in is selected in the GUI’s plug-in browser the plug-in’s name (defined in ‘name’), the help string
(defined ‘help’) and two labelled text input fields (as defined in ‘UI_elements’) will be created - one for the
collection and the other for the record ID.
See Defined UI element types for details on the usage of the UI element entries.

The help string should clearly state, what the plug-in is doing, so that the users understand its functionality and can
eventually use it in combination with their own plug-ins.

The return type (defined by ‘return_type’) is important for the GUI to correctly render the output of the plug-in. In
this case (return type ‘text’) the output will just be rendered as plain text in a text box.
See Defined return types for details.

As mentioned before plug-ins can also call other plug-ins. To illustrate this - the run function of a more complex
plug-in (which returns a tree representation of the data base) is shown:

def run(session):
 collections = session.run_plugin('get_collections')

 tree = {}
 for collection in collections:
 records = session.run_plugin('get_records', *[collection, {}])
 record_ids = [record['_id'] for record in records]
 tree[collection] = record_ids

 return tree

The you can see this plug-in uses the session’s run_plugin method to launch other plug-ins and process their return
values. In this case both the ‘get_collections’ and the ‘get_records’ plug-ins are used.

Defined UI element types

Besides the ‘type’ key all UI elements support the keys: ‘label’, ‘default_value’ and ‘data_type’.

Some UI elements may allow/require additional keys.
The following UI element types are currently supported:

	TextInput

	A line edit

Note

This list is work in progress and will be extended in future releases.

Defined return types

The return type defines how the data shall be rendered in the GUI.
Following return types are currently supported:

	text

	The returned results will be rendered as a text string a text box

	pyplot

	The returned results have to be rendered as a plot chart.

Note

This list is work in progress and will be extended in future releases.

Test environment

Warning

The test environment will run some servers on docker [https://docs.docker.com/] containers on your local machine. In order to allow
communication between the desktop-UI and the plug-in servers or to access the web-UI via a browser some ports of
the containers are exposed to the host system.
Read the Docker security [https://docs.docker.com/engine/security/security/] section on the docker website for details on security with regard to docker containers.

The test environment is not intended for production environments - it should only be used for testing and
development!

Prerequisites

openmatDB is developed and tested under GNU/linux. Since most of the code is based on interpreted languages it should
be possible to run on other platforms (e.g. MS Windows) as well, but for this chapter we assume you are running
a linux machine.

For building the test environment following programs have to installed on your system:

	docker

	cURL

	python3

Every major linux distribution should have official packages for these tools.

Obtain the source code

In order to setup a full test environment you will first have to download/clone the source code of all openmatDB
repositories - see Software components.

Assuming you want to store the data for the openmatDB environment in a folder called “openmatdb” in your home
directory, open a terminal and run following commands:

cd ~
mkdir openmatdb
cd openmatdb
git clone https://gitlab.com/thecker/pyopenmatdb.git
git clone https://gitlab.com/thecker/openmat-plugins.git
git clone https://gitlab.com/thecker/openmat-webui.git
git clone https://gitlab.com/thecker/openmatGUI.git
git clone https://gitlab.com/thecker/openmat-testenv.git

Build docker images

In order to build the docker images required to run the containers change into the openmat-testenv folder and start
the setup script:

cd openmat-testenv
./setup_env.sh

This shell script will pull pre-built docker images for couchDB and a python environment. It build images for the
openmatDB plug-in server and the web-ui (openmat-py_plguin:latest and openmat-webui:latest) based on the python
image.

To build the openmatDB images the python packages (and their dependencies) required by pyopenmatdb,
openmat-plugins and openmat-webui will be downloaded and installed on the images as well.

Check if the docker network ‘openmat-net’ exists and create it if not (the containers will communicate inside this
network and only expose dedicated ports to the host system)

Start docker containers

After you have build the docker images, you can start the containers (make sure the docker daemon is running).
A shell script to start the containers with the corresponding configuration is provided.

./start_all.sh

This script will do following steps:

	start the couchDB instance - container name: “couch_test”

	get the IP address of couchDB inside the docker network and update plug-in server config files

	start the first plug-in server - container name: “openmat_py_plugins”

	start the second plug-in server - container name: “openmat_py_plugins2”

	get the IP addresses of the plug-in servers in the docker network and update web-interface config files

	start the server for the web-interface (in interactive mode) - container name: “openmat_webui”

You should now see the log of the web-interface (e.g. incoming HTTP requests) in the terminal.

If you open up a browser window at http://0.0.0.0:5010 you should now get access to the openmatDB web-interface.
However the data base is still empty.

Note

In order to easily modify the programs running on the containers, the folders of the cloned openmatDB repositories
are mapped to the containers internal file systems. I.e. all changes made to the repository folders will be
reflected in the containers.

Importing test data

The easiest way to import test data is to go to the web-interface and in the “plug-ins” tab select the “Import records
from Excel” plug-in. The parameters will default to an excel file which is mapped to the filesystem of the
plug-in server (you can find it in the “py_plugins1_conf/files” sub directory inside your “openmat-testenv” folder).
So you can just click the “Run plug-in” button. You should see a list of record names, which have been imported from the
excel file.

[image: ../_images/import_data.png]

Connecting with the desktop-GUI

You can simultaneously connect with the desktop-GUI. Before starting the desktop-GUI you should do 2 steps:

First you should make sure, that the required python packages to run the desktop-GUI are installed.:

	requests

	PyQt5

	matplotlib

You can install these either via your linux distributions packages, pip or conda,… E.g. via pip just open up a
new terminal type:

pip install requests PyQt5 matplotlib

Next you need to add the python modules in the pyopenmatdb folder to your PYTHONPATH:

cd ~/openmatdb/pyopenmatdb
export PYTHONPATH=$PYTHONPATH:$(pwd)

Afterwards you can start the desktop-GUI:

cd ../openmatGUI
python gui.py

Note

Packages for pip and conda will be provided for future releases, which will take care of the dependency issues
and the steps above.

Stopping the test environment

To stop the containers just press CTRL+C in the terminal. You should see a message “All containers stopped successfully”
in the end.

Additional remarks

Note that you can also use Fauxton (an administration tool that comes with couchDB) to access the
data base. To do that open your browser at http://127.0.0.1:5984/_utils/

API reference

This section describes the API of the pyserver and pyopenmatdb module.

API for creating plug-ins in python

Each plug-in’s run-function shall have session as its first argument. session is an instance of
PythonPluginSever.
It has an attribute db_client which holds an instance CouchClient - i.e. providing direct data base
functions to the plug-ins.

PythonPluginSever

CouchClient

	
class openmatdb.pyopenmatdb.CouchClient(api_url, db_name, record_id_fields)

	Client for the RESTful API of couchDB

	Parameters

	
	api_url (str) – Url to data base (incl. port number)

	db_name (str) – Data base name

	record_id_fields (list) – List of str - record attribute names to join to record Ids.

	
api_url

	Url to data base (incl. port number)

	Type

	str

	
db_name

	Data base name

	Type

	str

	
record_id_fields

	List of str - record attribute names to join to record Ids.

	Type

	list

	
get_collections()

	Get collections

	
add_collection(collection_name)

	Adds a new view/collection

	
add_record(collection, record_data)

	Adds a record to the data base

	
add_records(collection, record_list)

	Add records to a collection

	Parameters

	
	collection (str) – Name of the collection

	record_list (list) – List of dictionaries with record attributes and values

	Returns

	List of valid records

	Return type

	list

	
get_records(collection, query_dict=None)

	Returns records as a list

	
get_record_by_ID(collection, record_ID)

	Get record by ID - collection

API for creating UIs in python

Each UI needs to communicate with the plug-in servers. The OpenmatEnvironment class provides an interface for this.

OpenmatEnvironemnt

	
class openmatdb.pyopenmatdb.OpenmatEnvironment

	Manager for the openmatDB environment (mainly communication with plug-in servers)

	
plugin_servers

	A list of server information. Dict for each server with keys:
‘server_name’, ‘url’, ‘plug-ins’, ‘plugin_language’

	Type

	list

	
active_record_id

	ID of the currently active record (to be set by UI)

	Type

	str

	
active_collection

	Name of the active collection (to be set by UI)

	Type

	str

Note

The active… attributes can be used to provide default values to plug-ins based on currently selected
items in the UI.

	
get_plugin_server_data(url)

	Retrieves information from a plug-in server (i.e. server name, plug-in language, available plug-ins + config)
:param url: URL to plug-in server API
:type url: str

	Returns

	with keys: ‘server_name’, ‘url’, ‘plug-ins’, ‘plugin_language’

	Return type

	dict

	
add_plugin_server(url)

	Adds a plug-in server reference and sends an updated plug-in route table to all servers

	Parameters

	url (str) – URL to the plug-in servers API

	
plugin_config

	Returns the plug-in configs of all plug-ins in the system

	
plugin_route_table

	Returns a dict of plug-in module names and their corresponding server url

	Type

	dict

	
run_plugin(plugin_name, *params)

	Starts a plug-in launch request

	Parameters

	
	plugin_name (str) – Name of the plug-in to run

	params (list) – List of parameters to pass to plug-in

RESTful API for building plugin-servers

TBD

Index

 A
 | C
 | D
 | G
 | O
 | P
 | R

A

 	
 	active_collection (openmatdb.pyopenmatdb.OpenmatEnvironment attribute)

 	active_record_id (openmatdb.pyopenmatdb.OpenmatEnvironment attribute)

 	add_collection() (openmatdb.pyopenmatdb.CouchClient method)

 	
 	add_plugin_server() (openmatdb.pyopenmatdb.OpenmatEnvironment method)

 	add_record() (openmatdb.pyopenmatdb.CouchClient method)

 	add_records() (openmatdb.pyopenmatdb.CouchClient method)

 	api_url (openmatdb.pyopenmatdb.CouchClient attribute)

C

 	
 	CouchClient (class in openmatdb.pyopenmatdb)

D

 	
 	db_name (openmatdb.pyopenmatdb.CouchClient attribute)

G

 	
 	get_collections() (openmatdb.pyopenmatdb.CouchClient method)

 	get_plugin_server_data() (openmatdb.pyopenmatdb.OpenmatEnvironment method)

 	
 	get_record_by_ID() (openmatdb.pyopenmatdb.CouchClient method)

 	get_records() (openmatdb.pyopenmatdb.CouchClient method)

O

 	
 	OpenmatEnvironment (class in openmatdb.pyopenmatdb)

P

 	
 	plugin_config (openmatdb.pyopenmatdb.OpenmatEnvironment attribute)

 	
 	plugin_route_table (openmatdb.pyopenmatdb.OpenmatEnvironment attribute)

 	plugin_servers (openmatdb.pyopenmatdb.OpenmatEnvironment attribute)

R

 	
 	record_id_fields (openmatdb.pyopenmatdb.CouchClient attribute)

 	
 	run_plugin() (openmatdb.pyopenmatdb.OpenmatEnvironment method)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/web-ui.png
atDB (w

illa Fir

openmatDB (web-uitest)

<« c @ 9

) 0.0.0.0501 80%) | o noe @& =

openmatDB - test interface

Active collection: Employees, active record ID:

DB navigator | [T About

Plugin name: | Create bar chart o Plugein results

Plug-in parameters:

Collection: | Employees.
Query dict

Atribute for x-axis: | last_name
Atribute for y-axis:| age

Ul type: | browser

Run plug-in

Crtton

Creates a bar chart for the records in the collection. The query dict can be used to fiter records. Aftributes for y-axis
have to be of numeric types. The ‘Ul type’ atribute must be Set to the correct Ul - either ‘deskiop’ or ‘browser.

_static/ajax-loader.gif

_images/interface_init.gif
Interface init

_images/user_request.gif
User reiuest: ex. “run pluginC”

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to openmatDB’s documentation!

 		
 Introducion

 		
 Framework overview

 		
 Plug-in server initialization procedure

 		
 UI initialization procedure

 		
 UI request processing procedure

 		
 Software components

 		
 pyopenmatdb

 		
 openmat-plugins

 		
 openmat-webui

 		
 openmatGUI

 		
 openmat-testenv

 		
 Licenses

 		
 pyopenmatdb

 		
 openmat-plugins

 		
 openmat-webui

 		
 openmatGUI

 		
 openmat-testenv

 		
 Plug-ins

 		
 General

 		
 Structure of a plug-in

 		
 Defined UI element types

 		
 Defined return types

 		
 Test environment

 		
 Prerequisites

 		
 Obtain the source code

 		
 Build docker images

 		
 Start docker containers

 		
 Importing test data

 		
 Connecting with the desktop-GUI

 		
 Stopping the test environment

 		
 Additional remarks

 		
 API reference

 		
 API for creating plug-ins in python

 		
 PythonPluginSever

 		
 CouchClient

 		
 API for creating UIs in python

 		
 OpenmatEnvironemnt

 		
 RESTful API for building plugin-servers

_images/framework_overview.png
User interfaces openmatDB environment

Plug-ins and plug-in servers

Plug-in server #...)
| APl | Plug-ins

wors |

_images/import_data.png
<« c @ © | & 0.0.0.0:501 0%

w n
openmatDB - tes

Active collection: , active record ID:

Plugin name: | Import records from Excel * Plug-in results:

["KemsJames Tiberius', “SmoldersWalter

harltonCurt", "LeopoldLouis”, "StintonHumphrey”]
Plug-in parameters:

Excel file name: | _ /flesftest_data.xisx

Sheet name: | Employees

Collection: | Employees
Run plug-in

Imports records from an excel sheet. First row of excel sheet will be used as attribute names. Returns the DB entry.
ids of successiully imported records.

_static/up.png

_images/desktop-ui.png
DB Navigator % | Actions %

Departments

~ Employees
CharltonCurt
Kemnsfames Tiberius

Lsoio\dlau

StintonHumphrey

Attribute.
_id

_rev
last_name
first_name
age

salary
position
department

collection

openMatDB

Value

smolderswalter
7-f1049b546cec01fb21ecb6117b51539¢
smolders

Walter

a2

85000

Assistant to manager

Management

Employees

